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Matched asymptotic expansion methods are used to solve the title problem. First-order 
Taylor number corrections to both the Stokes-law drag and Kirchhoff s-law couple on 
the sphere are obtained for Rossby numbers of order unity. This calculation fills a 
gap between the Proudman-Pearson (1957) rectilinear trajectory analysis, which 
includes Reynolds-number effects but does not address Taylor-number effects arising 
from the curvilinear trajectory, and the Herron, Davis & Bretherton (1975) 
curvilinear-trajectory analysis, which incorporates Taylor-number effects but ignores 
those arising from the Reynolds number. A t  the same Reynolds number, the drag 
on the sphere is found to be greater or less than the classical Oseen (1927)-Proudman 
& Pearson (1957) value, depending upon the magnitude of a certain dimensionless 
length parameter B measuring the tether radius to the sphere radius. This drag 
difference is attributed, in part, to the fact that the sphere runs into the disturbance 
created by its own wake. 

1. Introduction 
This paper addresses the steady rotation of a tethered sphere through a viscous 

fluid at small, non-zero Taylor and Reynolds numbers, the Rossby number being 
assumed of order unity. Since the sphere-centre trajectory is closed upon itself, the 
sphere continuously moves through the residual disturbance left by its own wake. 
Of interest is the question of whether, in consequence of this phenomenon, the drag 
on the sphere differs from that which would obtain if (at the same translational 
Reynolds number) its path were rectilinear rather than curvilinear. In rectilinear 
motion the wake always lies aft of the sphere. 

Of course, no difference is possible in the quasi-static Stokes limit, where all 
(density-induced) wake phenomena are necessarily absent. Only when fluid inertial 
and/or Coriolis and/or centrifugal effects are sensible are such differences possible. 
Our goal is to quantify this difference when such density-derived effects, though 
small, are non-zero. As discussed at the conclusion of this paper, our tethered-sphere 
analysis may be applied essentially unchanged to the ' antisedimentation ' rotating 

t Present address: Department of Mathematics, University of Alabama, P.O. Box 1416, 
University, AL 35486, USA. 
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tube device of Dill & Brenner (1983) and Nadim, Cox & Brenner (1985). Indeed, it 
was to aid in the further development of this device that the present analysis was 
undertaken. 

1.1. Historical review 

As an historical footnote (cf. Prandtl & Tietjens 1934; von Karman 1954), identical 
drag questions - though in the opposite limit of large Reynolds numbers - arose in 
the very early days of drag (and lift) measurements. Many such tethered-body 
experiments were performed, with the bodies under study mounted a t  the end (or 
opposite ends) of a whirling arm. Such rotary-arm ‘towing ’ devices were widely used 
prior to the advent of wind tunnels in the first decades of the present century. Von 
Karman (1954) and Rouse & Ince (1957) trace the use of such whirling-arm devices 
as far back as Benjamin Robins (1707-1751) and Jean Charles de Borda (1733-1799), 
though the wake disturbance effect upon the hydrodynamic resistance of the bodyt 
was apparently not articulated until the drag and lift experiments of the aeronautical 
pioneer Otto Lilienthal in 1870 (Lilienthal 1889). Apparently to avoid such 
curvilinear wake interference problems (and in the transition period just prior to the 
successful development of high-speed wind tunnels as viable alternatives to whirling 
arm devices), the civil engineer Alexandre Gustave Eiffel(l832-1923) used his famous 
turn-of-the-century Paris Exhibition tower (Eiffel 1907, 1910) to perform free-fall 
rectilinear drag and lift measurements on variously shaped bodies. Thus, excepting 
the Reynolds-number-range involved, the tethered body-wake interference problem 
to be addressed here can be said to  possess a long and auspicious history. Despite 
this, we are not aware of any pertinent theoretical studies of the matter. 

1.2. Relevant literature 

The slow motion of a sphere in a viscous rotating fluid has been studied by several 
authors. Childress (1964) and, more recently, Weisenborn (1985) simplified the 
inertial terms by restricting the sphere to move along the axis of rotation. Herron, 
Davis & Bretherton (1975) assumed the sphere velocity relative to the fluid to be small 
enough to neglect inertia terms in the rotating set of axes. Drew (1978) eliminated 
the centrifugal terms by imposing the rotation as a condition a t  infinity. Each of these 
authors calculated first-order corrections to  the Stokes drag and Kirchhoff couple on 
the sphere by using three-dimensional Fourier transforms to construct the velocity 
field due a Stokeslet a t  the origin, subsequently calculating the additional velocities 
engendered by the higher-order terms in the Navier-Stokes equations. Existing 
experimental work on the subject is reviewed and correlated by Karanfilian & Kotas 
(1981). 

Many other analytical and numerical investigations of the combined effects of 
simultaneous translational and rotational particle motions immediately beyond the 
Stokes range exist (Rubinow & Keller 1961 ; Cox 1965; Singh 1975a, b ;  Dennis, 
Ingham & Singh 1982), but none of these are strictly pertinent to  the title problem. 

1.3. Problem outline 

The fluid motion engendered by a tethered sphere whose centre traverses a circle a t  
uniform speed in a fluid a t  rest a t  infinity will be supposed steady relative to rotating 
axes. Coriolis, inertial and centrifugal terms in the rotating-frame Navier-Stokes 

t Even greater complications were created by the fact that the supporting arm itself tended to 
set the surrounding fluid into synchronous rotation, while simultaneously experiencing a retarding 
force above and beyond the drag force acting on the tethered body. 
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equations, are assumed to be scaled such that each is of the same order as the viscous 
and pressure terms in the outer field, while being negligible in the inner region. This 
is tantamount to an Oseen-type linearization in the outer flow field (Drew 1978), 
though in fact the actual asymptotic analysis is performed systematically by matched 
asymptotic expansions rather than ad hoc Oseen linearization. 

As in the case of the well-known rectilinear Oseen (1927) wake behind the body, 
some form of circular wake can be anticipated. Naturally, the latter structure features 
prominently in the mathematical analysis, in which the coordinate-system origin is 
chosen to lie on the axis of rotation - in contrast with the analyses of Childress (1964), 
Herron et al. (1975) and Drew (1978). Moreover, Fourier series and Hankel transforms 
(in the plane of the sphere’s motion) are used in place of the Fourier transforms 
employed by these three authors. Having obtained the velocity and pressure fields 
in this manner, the drag, lift and torque modifications derived by Herron et al. (1975) 
of the conventional quasi-static Stokes results are conveniently subtracted out, and 
the residual non-Stokesian contributions to the hydrodynamic force and torque 
expressed as triple integrals. These are then evaluated numerically, and the drag 
result compared with the rectilinear Oseen (1927)-Proudman & Pearson (1957) 
Reynolds-number correction to Stokes law. 

2. Basic equations 
Referring to figure 1, consider a freely rotating sphere whose centre C is constrained 

to rotate steadily about a fixed point 0 with angular velocity vector Id. We propose 
to calculate the hydrodynamic force F and torque M’ (about C) exerted by the fluid 
on the sphere in the limit 

(2.1) 
a & 4 1, 

and for small, but non-zero, Reynolds and Taylor numbers - in a precise sense to be 
defined.? Because of the circular trajectory of the sphere, the latter runs into the 
disturbance created by its own wake. Consequently, for a prescribed sphere-centre 
speed U = Bb, the drag on the sphere is expected (and found) to be different from 
that which would obtain if the sphere followed a rectilinear rather than a curvilinear 
path. Calculation of this difference is the-principal goal of this paper, bearing in mind 
that the disparity must necessarily disappear in the Stokes, zero-inertial-effect limit. 

In general, the equations of motion of an incompressible Newtonian fluid from the 
viewpoint of an observer fixed in the rotating system are (Greenspan 1968) 

(2.2) 
avf 1 
- + v ’ * V ’ V ‘ + ~ I ~ X V ‘ + S ~ X  R’ = --V’p‘+gf+uVf2v’ 
at P 

and 

with 

in which 

is the fictitious fluid pressure due to the centrifugal force on the fluid, and n’ the true 
fluid-mechanical pressure. Here, R’ is the position vector of a fluid point measured 
from an origin lying along the axis of rotation. The external body force g’ due to 

t The Rossby number (Greenspan 1968; Batchelor 1967), defined as U / Q L ,  with L here taken 
to be the radius b of the circular trajectory, is of order unity in the subsequent theory. 
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Axis of rotation 4 
Circular trajectory 

Sphere radius = a I of sphere centre, 

U 

P 

\ I radius = b 

U 

v 
FIQURE 1. Tethered sphere rotating steadily about an asymmetric axis. The angular velocity of 
rotation is B = kQ, with a = 101. The sphere is of radius a and its centre C is situated at a distance 
b from the axis of rotation. With 0 a point on the axis of rotation lying in the same plane as the 

sphere centre, we have that OC = 271, with (iJ, k) right-handed Cartesian unit vectors fixed in the 
rotating system. The coordinates of a fluid point Pare,  respectively, R’ and r’ with respect to origins 
at 0 and C - these two position vectors being related as in (2.9). Thus, the sphere surface Ir’l = a 
becomes IR’-z’bl = a in the R‘ system. Relative to a stationary observer, the instantaneous velocity 
U = B x ib of the sphere centre is U = j U ,  where U = Qb. Relative to this same observer, the 
angular velocity of the sphere about an axis through its centre C is B. 

+ 

gravity may, as usual, be absorbed into p‘ ,  and we shall suppose without further 
comment that in what follows this has been done. 

The velocity q‘ measured by an Earth-fixed, non-rotating observer is related to 
v’ by the expression 

(2.6) 9’ = v’+O x R’. 

The boundary condition that the fluid be at  rest at infinity relative to the stationary 
observer requires that 

q’+O as IR’I+ 00, (2.7) 

whereas the condition that the sphere neither translate nor rotate from the vantage 
point of the rotating observer requires that 

u’ = 0 on the sphere surface lr’l = a, (2.8) 

in which, referring to figure 1 ,  
r’ = R’-ib. 

In (2.2) we are interested only in the case of steady rotation (sd = 0), and then only 
in the relative steady state av’lat = 0 eventually attained after any initial transients 
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decay. I n  such circumstances, the basic equations of motion and boundary conditions, 
expressed entirely in terms of the velocity q' recorded by the stationary observer, 
become 

(2.10) 

V'aq' = 0, (2.11) 

q '+O as IR'I-+oo (2.12) 

B X  q'+(q'-B x R').V'q' = -p-1V'p'+UV'2q', 

and q' = B x  R' on IR'-ib( = a, (2.13) 

wherein V' = a/aR' = a/ar'. 

3. Near field 

Define non-dimensional inner variables by the relations 
3.1. Inner variables and equations 

wherein V = a/&, and in which 
U = Q b  

is the speed of the sphere centre relative to a stationary observer, while p', is the 
uniform pressure a t  infinity. Additionally, define the Taylor and Reynolds numbers 
(baued upon sphere radius) as 

and 

Qa2 T=-< 1 
U 

Ua 
R e = - 4  1 .  

U 

(3.3) 

(3-4) 

In terms of these new variables, the exact governing equations and boundary 
conditions (2.10)-(2.13) become 

(3.5) 
a 

T k x q + R e  'Vq  = - V p + V 2 q ,  

v-q = 0, 

q + O  asIrl+co, 

a 
b q = j + - k x r  on lrl = 1. (3.8) 

Following Childress (1964) in the solution of a related problem, we will suppose 
tha t t  

Explicitly, the path radius b is assumed to be comparable with the Eckman length 
( u / Q $  because 

B = b - = O ( l ) .  (3.10) 

t The two other possible limiting cases, Re % @ and Re 6 @, respectively correspond to those 

Re = @B = O(!l'k). (3.9) 

def (7 
already treated by Proudman & Pearson (1957) and Herron et al. (1975). 

6 PLM 168 
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Note that this makes 
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a T i  - 

b - 3 '  
- (3.11) 

which, since we have supposed T < 1 and B = 0(1), is consistent with our assumption 
(2.1). 

With use of (3.10) and (3.11), the basic inner equations (3.5) and (3.8) become, 

T [ k x q - ( k x r ) * V q ] + @ B ( q - j ) * V q  =-Vp+V2q (3.12) 
exactly, 

and 
Ti 
B 

q = j + - k x r  onIrl= 1 ,  (3.13) 

to which (3.6) and (3.7) are to be appended. Note that the rotational terms k x r are 
O( fl) smaller than their translational counterparts j .  

3.2. Inner expansion 
Following Herron et al. (1975) we seek inner expansions of the forms 

q(r;  T )  = qo(r) + f iqAr)  + O m ,  

p ( r ;  T) = POP) + fiP,(r)  + W), 

(3.14) 

(3.15) 

for the solution of the above exact system of inner equations. 

3.3. Zero-order inner j e l d  
The zero-order inner fields correspond to the classic Stokes flow of a sphere of unit 
radius translating uniformly (with velocity j )  in a fluid of unit viscosity that is a t  
rest at infinity. The well-known solution of this problem is (Lamb 1932) 

and 

1 1 
qo = - (/+FF)+- (/-3Fi) * j  [ 4", 4r3 

(3.16) 

(3.17) 

Here, F = r / r  is a unit radial vector. The non-dimensional force and torque on the 
sphere (about its centre) arising from this motion are 

fo = -6nj, 

mo = 0. 

(3.18) 

(3.19) 

Upon converting (3.16), (3.17) to outer independent and dependent variables via 
(4.6) below, we find that the matching condition requires that the outer fields satisfy 

] * j ,  
3 (R- iB)  (R- iB)  

Qo 41R - iBI [I+ IR-iBI2 

3 (R- iB)  
2 (R-iB13*j 

Po N - 

(3.20) 

(3.21) 

as JR-iBI+O. This field pair represents the classical Stokeslet solution (Lamb 1932) 
for a point force of strength -6nj situated a t  the origin, R = iB. 
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4. Far field 

Define non-dimensional outer variables by the equations 
4.1. Outer variables and equations 

157 

R = - R,  V ' E - =  a (f)' - V ,, q' = U@Q, p' -p& =pva-'UTP, (4.1) 
' (ai aR' 

in which V ,  = a/aR. In  terms of these variables, the exact governing equations and 
boundary conditions (2.10)-(2.13) become 

(4.2) 

VR. Q = 0, (4.3) 

Q+O as IRI+m, (4.4) 

x R on IR-iBI = 1. (4.5) 
1 

@B 

k x Q+@BQ.V,Q- (k x R)*v ,  Q = -v,  P+V$ Q, 

Q = - k  

In the second term appearing on the left-hand side of (4.2) we have replaced the 
coefficient Re that would otherwise have appeared by f iB ,  in accordance with (3.9). 
Equations (4.2)-(4.5) constitute the exact system of outer equations. 

We note from our definitions that corresponding inner and outer variables are 
related by 

q = @Q, p = TP, r = T-i(R-iB). (4.6a, b,  c )  

Assume outer expansions of the forms 

Q(R ; T )  = Qo(R) + fiQ,(R) + O(T), 

P( R ; 2') = P,(R) + @PI( R )  + O( T )  . 
(4.7) 

(4.8) 

Substitute these into (4.2)-(4.4) and equate terms of equal orders in T ;  however, this 
procedure is inapplicable to the boundary condition (4.5) on the sphere surface since 
the outer expansion is expected to be valid only in the outer region (R-iBI = O(1). 
Standard matching techniques show that Q, must satisfy an inner boundary 
condition corresponding to a point force of strength -6nj situated at  the point 
R - iB = 0 where the sphere centre is located. Hence the equations for Q, are 

(4.9) 

VR'QO = 0, (4.10) 

Qo+O as IRl+co, (4.11) 

with 6 the Dirac delta function. 
Equation (4.9) may be regarded as a classical Oseen (1927) linearization of the 

Navier-Stokes equations (2. lo), achieved by employing the far-field, Oseen-type 
approximation 0' --ax R', i.e. q' - 0 (derived from (2.6) and (2.7)) as the 
coefficient of the inertial term q'*Vq' in (2.10). In this sense, the interrelation existing 
between the Stokes solution, given by (3.16), (3.17), and the 'Oseen' solution of 
(4.9)-(4.11), including the matching condition, is precisely the same as in the classical 
Proudman & Pearson (1957) resolution of the translational counterpart of our 
rotational problem. 

V$ QO-VR Po-& x Q,+ (k  x R).V,  Q, = -jGx6(R-iB), 

6-2 
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4.2. Zero-order outer field 
In contrast to the work of Herron et al. (1975), terms of order T-i do not appear in 
the expansions (4.7) and (4.8) because they have been anticipated by working with 
q instead of u (the latter being the dimensionless counterpart of u' appearing in (2.2)). 
Those authors solved (4.9) in the presence of the Coriolis term, but in the absence 
of the inertial term, by employing a three-dimensional Fourier transform. However, 
this method is less helpful now because the additional terms (XaQ,/a Y - Y aQ,/aX) - 
with R ZE (X, Y, 2) - cause the appearance, in the transformed equations, of deriva- 
tives with respect to the first and second wavenumber components. The successful 
alternative is to introduce circular polar coordinates ( p ,  $, z ) ,  defined by 

since then 
X = p cos$, Y = p sin$, Z = z, 

with W = @a/++ 4p- l  a/a$ + k a/az, wherein ( p ,  4, k) arc appropriate unit vectors. 
This prevents the origin being moved from the axis of rotation to the point 
singularity, which disadvantage is to be anticipated on physical grounds since the 
well-known wake structure behind a sphere in uniform motion (Oseen 1927) suggests 
the existence of a corresponding circular wake effect here. 

Write Q, = (Qp, Q+, Q,) and introduce the Fourier transforms 

(4.12a, b) 
0 
P 

Q, = 2 Qz sinhz dh, [ $1 = { 0:) coshz dh, 
n o  

S(z) = - coshz dh, 
7r s," (4 .12~)  

and, subsequently, the Fourier series 

0 m m 

27cS($) = 1 + 2  C cosm$ = C eim$, 
m=1 m=-m 

0 

where S(+) is the periodic S function, defined by 
0 m 

a(+) = C 6($-2nn). 

Then the continuity equation (4.10) and the three components of the outer-field 
equation (4.9) reduce to the following set of ordinary differential equations, valid for 

n=-cc 

( 4 . 1 4 ~ )  

where (4.16) 
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According to Sneddon (1972), the Hankel transform zm[f(p)  ; El, defined for 
integers m 2 0 by 

roo 

possesses the inversion formula 

and the properties 
~ m [ ~ 1 , , f ; E I  =-(E2++2)*,[f;E1, (4 .19~)  

(4.19b) 

(4 .19~)  

Thus, when Hankel transforms of orders m and (m+ 1)) are applied to equations 
(4.14) and the pair (4.15) respectively, the resulting set of equations obtained for each 
integer m has (by use of (4.19)) the matrix form 

With 

the determinant of the coefficients, the solutions of (4.20) are 

Am = ( A 2  + t2) ( A 2  + E2 - im)2 + A2 (4.21) 

( ~ ~ + ~ ~ - i m ) - l  *m[pm; El = E-'*m[C?m,; El (4.22 a) 

and 
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Similarly, the Fourier transform of the z-component of vorticity 

is given by - 
3 ' 0  

4, = -- Z eim@ j rn  [2Jm(pE)  {ih2[J,_,(B5)+J,+,(BE)] 
4 m--m o A m  

+ (A2 + E2) (A2 + E2 - im) [J,-,(BE) - Jm+,(BE)]} d5. (4.24) 

Although the [-integrals in (4.23) and (4.24) cannot be evaluated explicitly, the 
appearance in the integrands of products of Beesel functions of arguments p t  and B t  
strongly suggest enhanced values at p = B due to some form of circular wake (in 
accordance with physical expectations). The effect of this 'wake' upon the hydro- 
dynamic force and torque exerted by the fluid on the sphere will be evaluated to order 
fl in the next section. 

5. Force and torque on the sphere 
Since Q, and, hence, the p- and $-components of vorticity vanish at z = 0, the 

hydrodynamic force F = -puaQbF and torque M' = -puS2a3Mk (about the sphere 
centre) exerted on the sphere by the fluid are given by (Herron et al. 1975)t 

F =  6x[ j -Tf [ (Qp-Qf ) ) (B ,  o,  o) i+(&9-&f9(B,  o, o)jl+O(T)l, (5 . la)  

M =  ~ X [ ~ - + T ~ ( O , - O $ ' ) ) ( , ,  o, o)+O(T)] .  (5.lb) 

Here, el;") denotes the Stokes solution [cf. (3.20), (3.21)], i.e. that for which the 
Coriolis and inertia terms are omitted from (4.9), and therefore for which no 
imaginary terms appear in the coefficient matrix of the Hankel transforms. 

Let QiH) denote the solution constructed by Herron et al. (1975)' i.e. that for which 
only the inertia term is omitted from (4.9). Since those authors showed that 

(Q;H)-Qjs))(B, 0 , O )  = &9 (Q$H)-Q$s))(B, 0 . 0 )  = --*, (WlH)-  O% (s) ) ( B ,  0 , O )  = o, 
and since evidently ( u $ ~ ) ) ( ~ ,  o,  o) =0 ,  it  follows that the hydrodynamic force and 
torque formulas (5.1) can be rewritten as 

(5.2a) 

M = 8" - m % ) ( B ,  0 . 0 )  + W)1. (5 .2b )  

In this way the calculation is reduced to that of finding the effects of including the 
inertia terms in (4.9). 

After factoring the denominator dm [cf. (4.21)] appearing therein, the 
m-summations of (4.23 b )  and (4.24) adopt the generic form 

F =  W j - R & ( i ~ - W  + (Qp-QjH')(B, 0, 0 )  i+ (Q+-c?$~)) (B,  0 ,  O ) J I  +O(T)) ,  

00 ,imQ 

where the summations 
03 

Z s, eim+ = s($) 
m--a, 

(5.4) 

t Note that the Herron et al. (1975) definition of the Taylor number is exactly twice that used 
by us in (3.3). This difference arises because their fluid and, hence axes, rotate at infinity. 
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are combinations of the following summations (derived from formula 8.530.2 of 
Gradshteyn & Ryzhik 1980): 

(5.5 c, a) 
The subsequent algebraic expressions can be simplified by replacing the non-negative 
variables ( A ,  6)  by the 'polar' coordinates x( 2 0) and q(0 < q < l), defined by 

A = $7, f = $(l +)t. (5.6a, b) 

Then, since A'(#), defined by (5.3), satisfies the differential equation 

it may be readily shown that the summations required in (5.2) are of the form 
2x A'(0)-- s(0) = [1-e-2x(x-i~)]-1~ [s($)-s(O)] e-(X-iT)$ d$. 

X-'7 0 

Hence 
m 

m--m 
2(h2+E2) X am 

r 2% 

x {eczn-$)x cos($q)-e-+x cos[(2x-$)q]}d$, ( 5 . 7 ~ )  
and 

= [cosh(2xX)-cos (2xq)l-l [s($)-s(O)] JO2" 
x {e(2n-+)x sin($q)+e-+x sin[(2x-$)q]}d$, (5 .7b)  

where s($) and (x, q )  are given by (5.4) and (5.6) respectively. 
When (4.23b) is substituted into the Fourier transforms (4.12), the variables of 

integration changed according to  (5.6), and the summations evaluated by means 
of (5.5a,b) and (5.7a,b), it follows that the quantities required to complete the 
calculation of F in ( 5 . 2 ~ )  are given by 

r r 2 r  

x 127 J {J0[2B$( 1 - qz)i sin +$] cos $ - l} cosh [(2x - $) x] sin ($7) d$ 
0 

+ ( l + y 2 ) r  J0[2B$(1-q2): sin+$] sin$ cosh[(2x-$)~] cos($r) d$], ( 5 . 8 ~ )  
0 
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B 

0.25 
0.50 
0.75 
1 .oo 
1.25 
1.50 
2.00 
2.50 
3.00 
4.00 
5.00 
6.00 
(a) 

(0) 

cz 
- 6/7 

-0.851 
-0.838 
-0.817 
-0.790 
-0.759 
-0.725 
-0.653 
-0.585 
-0.525 
- 0.432 
-0.366 
-0.320 

0 

c, 
617 

0.851 
0.849 
0.847 
0.846 
0.848 
0.853 
0.879 
0.922 
0.978 
1.096 
1.196 
1.270 
- 

cz 
0 

-0.035 
-0.068 
-0.096 
-0.119 
-0.134 
-0.143 
-0.145 
-0.133 
-0.1 16 
-0.081 
-0.054 
-0.033 
- 

c 

9.08 
4.53 
3.01 
2.26 
1.81 
1.52 
1.17 
0.984 
0.870 
0.731 
0.638 
0.565 

m 

- 

TABLE 1. Numerical values of the force, torque and normalized Reynolds-number drag coefficients 
appearing in Eqs. (5.10), (5.11) and (6.3) for admissible values of B.  (The extreme values B = 0 
and m are inadmissible. Where known, they are included here only for completeness.) 

x [ - 27 IO2= JO[2B& 1 - T,+): sini@] sin 1c. sinh [(2x - $) x] sin ($7) d~ 

((1+q2){Jo[2Bd(1-q2): sin!$] cos@-l} 
+ 6 
+( l -~ ,~~)J~[2Bx4(1-7~):  sin+@]) sinh[(2n-$)x] COS($' )I )  d@]. (5.8b) 

Similarly, but without the need to include s(0) in (5.7 a, b ) ,  (4.24) implies that the 
coefficient of the order-@ correction to the dimensionless torque M in (5.2b) is given 
by 

Thus the Fourier series a t  p = B, 9 = 0 have been expressed as @-integrals of simpler 
form. 

Values of the triple integrals in (5.8a, b,  c )  have been computed numerically. I n  
turn, these have been used to compute the B-dependent force and torque coefficients, 

(5.9a) 

(5.9b) 

and Q =-q 2 w z ) ( B ,  0 ,  0) '  (5.9c) 
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required in the formulas (cf. (5.2a, b ) )  

I; = 67~Lj + @(iC, +jC,) + O( T)], 

M =  8~[l+!iW,+O(T)1. 

These coefficients are tabulated in table 1. 
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(5.10) 

(5.11) 

6. Discussion 
6.1. Rectilinear limit? 

In  the limit, one would expect to recover the classical Oseen (1927)-Proudman & 
Pearson (1 957) rectilinear Stokes-law drag correction coefficient, 

from our curvilinear analysis by allowing the tether radius b to tend to infinity while, 
simultaneously, allowing the angular velocity O to tend to zero in such a way that 
the product Ob( = U )  remains finite. For in this limit (and with a/b -g I ) ,  the Taylor 
number T = 02a/u vanishes from the governing equations, whereas the Reynolds 
number Re = Ua/u remains. According to (3.9) or (3.10), this asymptotic situation 
corresponds to the limiting case where B >> 1. Were this intuitive guess sustained, 
the C, values tabulated in table 1 would tend to iB as required by (5.10) and (6.1). 
While our numerics do not extend beyond the last entry, B = 6, the data appear to 
preclude this possibility. Indeed, the values tabulated in the last column of table 1 
of the normalized coefficient 

appearing in the sphere drag formula 

p- - l+CtRe, 

seem to be tending towards the limiting value C = 0 as B-t co, rather than towards 
the value C = 1 that would be required to achieve the Oseen limit (6.1). 

The explanation of this apparent paradox becomes clear upon using (3.9) to rewrite 
the basic inner and outer equations explicitly in terms of Re and B, rather than T 
and B. In terms of the former pair of parameters, the exact governing equations 
become (with prime affix denoting the correspondingly numbered equation previously 
written in the T and B format) : 

Inner 
Re2 3 [k x q - (k x r)*Vq] +Re (q -j)*Vq = - V p  + V2q, (3.12') 

q = j + - k x r  on Irl = 1, (3.13') 
Re 
B2 

along with (3.6) and (3.7); 
Outer 

k x Q + Re Q .  V, Q - (k  x R )  *V, Q = - V R  P+ VB Q, (4.2') 

1 
Re 

Q = - k x R  onIR-iBI=l,  

along with (4.3) and (4.4). 

(4.5') 
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Whereas the B+co limit in the inner equations causes them to properly reduce 
to the corresponding Proudman & Pearson (1957) inner equations, the same is not true 
of the outer equations - for which the curvilinear terms k x Q and - (k  x R ) * V ,  Q 
remain, despite the Taylor number being identically zero. Accordingly, our drag result 
cannot be expected to approach the limiting value (6.1). Indeed, the B+oo limit is 
inadmissible in our analysis, since only B-values of order unity are consistent with 
our scaling hypothesis (3.9) and choice of origin. And both of these differ from what 
would be required to derive the rectilinear trajectory limit, for which the sphere never 
encounters its own wake.? 

6.2. Antisedimentation Tube 
Though the preceding analysis has been presented in the guise of a non-axial rotating 
sphere in an otherwise stationary fluid, the actual motivation for the present study 
involved the reciprocal situation of a non-axial stationary sphere in a rotating 
fluid. The latter conditions represent the physical circumstances prevailing in an 
‘antisedimentation’ tube (Dill & Brenner 1983; Nadim, Cox & Rrenner 1985) 
currently under development. This advice (figure 2) permits a non-neutrally buoyant 
sphere to remain permanently suspended against the force of gravity by balancing 
its downward settling motion against an upward fluid current created by the steady 
rotation of a fluid-filled circular cylinder rotating about a horizontal axis. Until now, 
calculations pertaining to the operation of this device have only been available for 
the Stokes-flow limit, where inertial, centrifugal and Coriolis forces are all negligible. 

Relative to a stationary observer, the dimensional equations of motion governing 
the steady fluid motion depicted in figure 2 are 

1 

P 
V’*V’V’ = -- V’z’  + U V ’ Z V ’ ,  

V’.v’ = 0 ,  

v’ = 0 

v’L52x R’ as IR’I+oo. 

at 11’1 = a, 

Gravity forces acting upon the incompressible fluid have been absorbed into the 
pressure term. Define 

9’ = v’--S1 x R’ 

and p‘ = d++[S22R’2- (f2*R’)2].  

The fields (q’,p’) represent the fluid motion as seen by a rotating observer. 

variables 
With r’ defined as in (2.9), we follow (3.1) in introducing the non-dimensional 

r’ = ar, V‘ = a-’V, 

q’ = Uq, p’-p:,  = pua-’Up, 

t It is interesting to note in this wake-interference context that the classical Oseen (1927) 
analysis (cf. Happel & Brenner 1983, p. 281) for two (relatively distant) equal spheres translating 
with identical velocities along their line of centres reveals that the trailing sphere experiences a 
smaller drag force than does the leading one. This asymmetric ‘shielding’ effect is experimentally 
well documented (Happel & Pfeffer 1960), in the sense that when two proximate spheres settle slowly 
in a viscous fluid (in the Reynolds-number range where inertial effects are sensible), the trailing 
one always overtakes the leading one. 
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FIGURE 2. Antisedimentation tube. A homogeneous non-neutrally buoyant sphere of radius a, whose 
density exceeds that of the fluid, can be prevented from sedimenting by counterclockwise rotation 
of the horizontal cylinder (and fluid contents) a t  an angular velocity Li = kf2 (with k out of the 
plane of the paper) just sufficient that the drag force exerted by the fluid on the sphere (in the 
j-direction, opposite to gravity) exactly balances the net gravity force -j4xaslApl g/3 on the sphere. 
Here, lApl is the magnitude of the sphere-fluid density difference and g the acceleration due to 
gravity. For simplicity in our calculations the sphere is assumed tethered to the cylinder centre 
to prevent the centrifugal and other radially directed 'inertial' forces from moving the sphere 
outward, in the i direction. In such circumstances the sphere centre C will lie in the same horizontal 
plane aa the cylinder axis 0, perpendicular to gravity (Dill & Brenner 1983, Nadim et a2. 1985), 
held by the tether at  a fixed distance b from the cylinder axis. To bring the present problem into 
correspondence with the problem previously treated, it will be supposed that the sphere does not 
rotate (about an axis through its centre). It should be understood, however, that the corresponding 
untethred sphere would, in fact, rotate owing to the absence of any restraining couples. The angular 
velocity of this free rotation can eventually be determined by formulae of the type (5.11). It will 
also be assumed that a/(R,-b) 4 1, so that wall effects on the sphere are negligible. 

with the velocity g y e t  to be chosen. Define T as in (3.3) (with SZ > 0) and [cf. (3.4)] 

In terms of these, the fields (q,p) are governed by the system of dimensionless 
equations 

T k x q + ~ [ q + $ ! ( j + ~ k x r ) ] * V q  = -Vp+Vaq, 

v - q  = 0, 

q+O as [rl+m, 

q=-7( j+bkxr)  52b a onIr l=l .  
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The choice U = -Db renders this system of equations identical with (3.5)-(3.8), 
except that since Re = -Re = -SZab/v, the coefficient of Re [cf. (3.2) and (3.4)] in 
equation (3.5) is not negative rather than positive. Apart from this algebraic-sign 
difference the analysis is identical with that already given in the preceding sections. 
Indeed, the results for the present antisedimentation case can be trivially obtained 
by replacing b by - b and, hence, B by - B in the prior analysis. This sign change 
has an impact in two ways. First, at  the beginning of $5, we now have that 

F = puaf2lbl F, 

where F is the non-dimensional force appearing in ( 5 . 4 ~ ) .  [The corresponding relation 
between M‘ and M, with M given as in (5.1 b), remains unaltered however.] Secondly, 
since the Bessel functions J ,  appearing in (5.8a-c) are respectively odd or even 
functions of their arguments according as the integer m is itself odd or even, i t  follows 
that the three coefficients defined in (5.9a-c) possess the following properties: 

-def 

With this proviso the tabulation of table 1 can now be used to calculate F and M 
via (5.10) and (5.1 1 )  for B in the range - co < B < 0.  

This extension of the analysis to the case B < 0 thus furnishes the requisite data 
required to analyse the antisedimentation tube of figure 2 for circumstances in which 
inertial effects, though small, are not negligible. 

The boundary conditions for the original tethered-sphere problem are, from the 
viewpoint of a rotating observer, identical to those of the antisedimentation problem 
as seen by a stationary observer - namely zero velocity on the sphere surface and 
a velocity equal to sh x R‘ at infinity. Moreover, each problem is steady with respect 
to its respective observer. However, the differential equations governing the respec- 
tive velocity fields are different, owing to the necessity for including fictitious body 
forces in the rotating-reference-frame problem. Accordingly, the hydrodynamic forces 
and couples on the sphere cannot generally be the same for both problems. While our 
calculations reveal this to be true of the couple, the forces are in fact the same, a t  
least to the order of the approximation. This equality cannot, however, continue to 
persist at  all others. 
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